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Abstract Sketch-based 3D model retrieval is very important for applications such
as 3D modeling and recognition. In this paper, a sketch-based retrieval algorithm is
proposed based on a 3D model feature named View Context and 2D relative shape
context matching. To enhance the accuracy of 2D sketch-3D model correspondence
as well as the retrieval performance, we propose to align a 3D model with a query
2D sketch before measuring their distance. First, we efficiently select some candidate
views from a set of densely sampled views of the 3D model to align the sketch and
the model based on their View Context similarities. Then, we compute the more
accurate relative shape context distance between the sketch and every candidate
view, and regard the minimum one as the sketch-model distance. To speed up
retrieval, we precompute the View Context and relative shape context features of
the sample views of all the 3D models in the database. Comparative and evaluative
experiments based on hand-drawn and standard line drawing sketches demonstrate
the effectiveness and robustness of our approach and it significantly outperforms
several latest sketch-based retrieval algorithms.

Keywords Sketch-based 3D model retrieval · 2D-3D alignment · View context

1 Introduction

Sketch-based 3D model retrieval is to retrieve 3D models using a 2D sketch as input.
This scheme is intuitive and convenient for users to search for relevant 3D models
and also important for several applications including sketch-based modeling [27] and
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sketch-based recognition [40]. One example of integrating a sketch-based retrieval
algorithm into a sketch-based modeling process is proposed by Fonseca et al. [10].

Currently, there exist many sketch-based 3D model retrieval algorithms such as
[11, 16, 18, 25, 32, 38, 39]. However, to the best of our knowledge, all the available
approaches compare the query 2D sketch with a very limited number of sample views
of the 3D model. For example, Funkhouser et al. [11] only sampled 13 views rendered
from 4 top corners, 6 edge midpoints and 3 adjacent face centers of a cube; Kanai
[16], Yoon et al. [39] and Saavedra et al. [32] sampled only 14 views comprising 6
orthographic and 8 isometric views by sampling viewpoints on a cube or a sphere. In
fact, this sparse view sampling approach is subject to inaccurate 2D sketch-3D model
correspondence because the pose of the query sketch, that is, the viewpoint of the
viewer when drawing the sketch, may have big difference with any of the sample
views. Thus, the 2D-3D correspondence is not robust based on only several sample
views generated using predefined fixed sample locations.

When retrieving 3D models using a 2D query sketch, we need to compute the
distance between the 2D sketch and the 3D model. Ideally, it is good if we compare
the 2D sketch with the most similar view or the optimal corresponding view of the 3D
model. However, if we sparsely sample a limited number (e.g. 3∼24 in previous work)
of views, the chance that the optimal view is among the selected sample views will
be low. However, due to the high computational cost, we also cannot exhaustively
compare with a large amount of sample views of a 3D model.

Motivated by the above findings and in order to improve the retrieval perfor-
mance, we propose a novel sketch-based 3D model retrieval algorithm which first
performs a 2D sketch-3D model alignment before 2D-3D matching. Our proposed
2D sketch-3D model alignment utilizes a 3D model feature named View Context
[19] to rapidly select some candidate views from a set of densely sampled views.
View Context is utilized because we have found a new property of it: View Contexts
of different views of the same model are often distinctively different. This property
facilitates us to distinguish different views during the candidate views selection for
2D-3D correspondence. Our sketch-based retrieval algorithm is composed of two
stages which are precomputation and retrieval. The retrieval stage comprises two
steps which are 2D-3D alignment and 2D-3D matching. The effectiveness as well
as the robustness of our approach are demonstrated by comparative and evaluative
experiments, using both hand-drawn sketches and standard line drawings as queries
and a standard 3D model dataset as target database. Moreover, we have achieved a
better performance than several latest sketch-based retrieval algorithms.

The rest of this paper is organized as follows. In Section 2, we review the related
work in sketch-based 3D model retrieval. Feature extraction and feature distance
computation methods for 3D model and 2D sketch are presented in Sections 3 and 4,
respectively. In Section 5, we present our sketch-based 3D model retrieval algorithm.
Experiments are conducted in Section 6. Section 7 concludes the paper and lists
several future research directions.

2 Related work

Funkhouser et al. [11] developed a search engine that supports 2D/3D sketch queries.
To measure the distance between a 2D sketch and a 3D model, they applied the
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3D spherical harmonics [17] method to the 2D sketch in an analogous way to
extract a rotation-invariant amplitude-related feature vector and then compared it
with those of the 13 sample views. Similarly, Pu and Ramani [29, 30] extended 3D
spherical harmonics [17] and shape distribution [28] from 3D models to 2D drawings
and proposed a 2.5D spherical harmonics and 2D shape histogram respectively for
the retrieval of CAD drawings. Lee et al. [18] matched a sketch with 24 possible
orthogonal contour views, based on 6 standard view directions and 4 axis-aligned up-
vectors. Squared distance transform is then applied and a sum of squared distances-
based similarity metric is adopted to measure the sketch-model distance. Hou and
Ramani [12, 13] used a multi-classifier to estimate the probability of the sketch
belonging to each class and adopted a classifier combination scheme to find relevant
classes. Cao et al. [3] proposed a different retrieval framework by reconstructing a
3D query model using Bezier surface representation based on user drawn sketches.
It constructs an accurate enough 3D query model where users need to draw enough
curves to specify the features, which means it may take more time for users to
perform retrieval.

Kanai [16] proposed a sketch-based retrieval interface by employing two rotation-
invariant features, which are generic Fourier descriptor (GFD) [41] and a variation
of local binary pattern (LBP) initially proposed by Ojala et al. [26], to measure the
distance between a 2D sketch and a rendered view of a 3D model. Wang et al. [38]
proposed a sketch-based CAD model retrieval interface using three sketches and
a skeleton image as input. To measure the similarity of a 2D outline sketch and
the outlines of a 3D model, they adopted angular radial partitioning (ARP) [4].
It decomposes an outline sketch into a set of angular radial sectors, then applies
Fourier transform to the statistics of the feature points’ distribution, and finally uses
the rotation-invariant magnitude vector to represent the 2D sketch. However, they
compared the sketch with only the 3 standard outline views of a normalized 3D
model. This is feasible for CAD model retrieval but not appropriate for general
3D model retrieval, for which the pose of the query sketch is often not one of the
principle views.

Recently, Napoléon and Sahbi [24, 25] proposed another sketch-based retrieval
algorithm. They utilized a multi-scale convexity/concavity (MCC) shape represen-
tation [1] to represent the contours of a set of (3∼9) sampled views. To speed
up the retrieval, a pruning strategy and a dynamic programming approach are
adopted to match the MCC features of the sketch and the contours. Yoon et al.
[39] proposed a sketch-based retrieval algorithm by matching the sketch with 14
rendered suggestive contours [7] feature views of a model based on the diffusion
tensor fields feature representation for the sketch and sampled views. Using the same
view sampling method and feature views as Yoon et al. [39], Saavedra et al. [32]
proposed a sketch-based 3D model retrieval algorithm using a structure-based local
approach (STELA) and achieved a better performance than an improved histogram
of edge local orientations-based global approach (HELO) proposed by Saavedra and
Bustos [33].

To summarize, previous sketch-based 3D model retrieval algorithms adopted
a coarse 2D sketch-3D model matching framework. They measure the distance
between a sketch and a 3D model by directly comparing the distances between the
sketch and only a small number of predefined sample views and then choosing the
minimum one. However, this framework has a shortcoming in terms of accuracy in
the 2D-3D correspondence, which motivates us to develop a sketch-based retrieval
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algorithm by integrating a 2D-3D alignment step to correspond the query sketch
and the 3D model before the actual 2D-3D matching. Experimental results in
Section 6 show that considering more views of a target 3D model to correspond with
a query sketch for a more accurate 2D-3D correspondence improves the retrieval
performance.

3 Feature extraction

To measure the difference between a 2D sketch and the views of a 3D model
effectively and efficiently, we need to extract similar yet simple features. In our
algorithm, to represent different features of a view, we extract silhouette and outline
feature views for both 2D sketches and 3D models. Silhouette feature view is selected
because of its robustness for the 2D sketch-3D model alignment, while outline view is
chosen because of its better accuracy in selecting the relevant models during the 2D-
3D matching in the retrieval stage. Silhouette and outline feature views are simple in
essence and often coexist in both the sketches and the sample views of an object
and thus form a simple and similar feature set. Compared to the features in the
related work section, such as 3D spherical harmonics, generic Fourier descriptor
(GFD), local binary pattern (LBP), multi-scale convexity/concavity (MCC) as well
as diffusion tensor fields feature representations of suggestive contours, the features
we selected have the virtues of simple and low computational complexity.

3.1 3D model feature extraction

We render the silhouette and outline views based on orthographic projection. Due
to the orthographic projection, there is a symmetrical property in rendering both
feature views: two views rendered from two opposite camera locations are identical.
One example showing the two feature views of a teddy model is shown in Fig. 1.
Silhouette view depicts the region information of the view while outline view
represents its contour information.

Silhouette and outline views are used to extract the View Context features of a
3D model and a 2D sketch. Additionally, outline view is also used to compute a
more accurate relative shape context matching [2] cost between the sketch and each
candidate view resulting from the 2D-3D alignment.

Fig. 1 The feature views of a
3D teddy model. a The teddy
model; b silhouette view;
c outline view

(a) (b) (c)
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Fig. 2 Four sets of examples
of sketch feature extraction for
both hand-drawn sketches in
[39] and standard line
drawings in [35]. For every set,
from left to right: sketch,
silhouette view and outline
view

(a) Hand-drawn sketches in [39]

(b) Standard line drawing sketches in [35]

3.2 2D sketch feature extraction

A sketch is composed of a set of curves. It can be: (1) a hand-drawn sketch drawn
by non-artist people, such as the sketches built by Yoon et al. [39]; (2) a sketch
drawn by artists, for example, the sketch dataset created by Cole et al. [6]; or (3) a
standard line drawing such as the 260 Snograss and Vanderwart’s standardized 2D
object images [35].

We need to extract the silhouette and outline feature views for a 2D sketch to
correspond with a 3D model. We generate a silhouette view based on the following
steps: binarization, Canny edge detection, morphological closing operations (repeat
until the result no longer changes), gap connection and region filling. After that, we
apply the Canny edge detector on the binary silhouette image to extract the outline
of the sketch. Figure 2 illustrates two groups of examples of hand-drawn sketches in
Yoon et al. [39] and standard line drawings in Snograss and Vanderwart [35].

4 Feature distance

To compute the distance between two feature views, we need to extract appro-
priate shape descriptors to balance the efficiency and accuracy in different stages
of our retrieval algorithm. For the View Context feature extraction used in the
precomputation stage and the 2D-3D alignment step in the retrieval stage, we adopt
a computationally efficient integrated image descriptor. For the 2D-3D matching
during the retrieval stage, we utilize the more accurate relative shape context
descriptor.

4.1 Integrated image distance

We compare two sets of feature views based on an integrated image descriptor,
motivated by the Light Field descriptor proposed by Chen et al. [5] and their source
code. To represent the region and contour information of the feature views, we adopt
the shape descriptor proposed by Zhang and Luo [42] and use 35 Zernike moments
Z to represent the silhouette view and 10 Fourier descriptors F to represent the
outline view. Zernike moments Z are normalized into the range of (0,1) by dividing
them by the area of the 2D shape. Fourier descriptors F are normalized by the
constant component F(0), which is also named the direct current (DC) component
of the Fourier descriptor series. Thus, F ∈ (0, 1). In addition, to depict the geometric
information of the outline view, we extract its eccentricity and circularity features.
Eccentricity is to measure how much a shape deviates from a circle. For a 2D
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shape defined by n points {(xi, yi)|i = 1, · · · , n}, we adopt the following definition
to compute its eccentricity,

E =
[

n∑
i=1

(xi − cx)
2 −

n∑
i=1

(yi − cy)
2

]2

+ 4 ·
[∑n

i=1 (xi − cx)(yi − cy)
]2

[∑n
i=1 (xi − cx)2 + ∑n

i=1 (yi − cy)2
]2 ,

(1)

where (cx, cy) is the center of the bounding box of the 2D shape. For our case, the
2D shape is a closed curve and the range of its eccentricity is [0,1). Circularity is to
measure the compactness of the shape. It is defined as the quotient of the area of the
shape and the area of a circle with the same perimeter: C = 4 ∗ π ∗ A/P2, where C
is the circularity, A and P are the area and perimeter of the shape, respectively.
We use the city block (L1) distance metric to measure the distances of Zernike
moments (dZ ), Fourier descriptors (dF), Eccentricity descriptor (dE) and Circularity
descriptor (dC).

dZ =
35∑

p=1

|Z1(p) − Z2(p)|, (2)

where Z1 and Z2 are the Zernike moments features of two silhouette views.

dF =
10∑

q=1

|F1(q) − F2(q)|, (3)

where F1 and F2 are the Fourier descriptors features of two outline views.

dE = |E1 − E2|, (4)

where E1 and E2 are the eccentricity features of two outline views, dE ∈ [0, 1).

dC = |C1 − C2|, (5)

where C1 and C2 are the circularity features of two outline views, dC ∈ [0, 1).
The integrated image distance d between two sets of feature views is the combi-

nation of the above four component distances,

d = dZ + dF + dE + dC. (6)

The four features Z, F, E, C depict a feature view from different aspects and they
have the same contribution in the computation of the integrated image distance.
Therefore, we linearly combine them and assign the same weight for each feature.

4.2 Relative shape context matching distance

We use the relative shape context matching [2] to compute a more accurate distance
to measure the difference between the sketch and each candidate view resulting from
the alignment step during the retrieval stage. Relative shape context is defined to
achieve rotation invariance property and it is necessary for our sketch-based retrieval
scenario, for which sample views should be independent of camera up-vectors during
rendering and the orientation of the sketch.
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To compute the difference between two outline feature views, we first sample a
set of feature points for each image and then use the relative shape context matching
algorithm described in [2] to measure their distance.

(1) Feature points sampling. We sample 100 points for every outline feature view
based on the following steps: contour extraction, cubic B-Spline interpolation
and uniform sampling.

(2) Relative shape context matching We first extract the relative shape context
feature [2] for every feature point in an outline view and then adopt Jonker’s
LAP algorithm [15] to correspond the feature points of two outline views and
finally use the minimum matching cost to measure their distance. To compute
the relative shape context, we compute the tangent vector to define the local
relative x axis for each sample point. This can be easily achieved considering
that we use a cubic B-spline to interpolate the contour during the above feature
points sampling process and the derivative curve of a cubic B-spline curve is a
quadric B-spline curve [31].

5 Our sketch-based 3D model retrieval algorithm

As described in Sections 1 and 2, many previous sketch-based 3D model retrieval
algorithms (e.g. [18, 25, 38]) sample only a limited number (e.g. 3∼24) of views
to match a 3D model with a query 2D sketch. Apparently, as mentioned in
Section 1, this sparse view sampling approach will limit the accuracy of the 2D-
3D correspondence. This is because if the pose of the query sketch is apparently
different from those of the limited number of predefined sampling views, the 2D-3D
correspondence is not accurate. Thus, the 2D-3D matching distance cannot represent
the real difference between the 2D sketch and the 3D model. Motivated by the above
findings, we propose to first perform a 2D sketch-3D model alignment step to find a
set of candidate views for the 2D-3D correspondence and then compute the 2D-3D
matching distance based on the candidate views.

It should be noted that our 2D sketch-3D model alignment is different from the
common 2D image-3D model registration techniques [9, 14] which optimize the
rotation angles and the translation and scaling parameters to register a 3D model
with a 2D image. Firstly, their 2D image and 3D model depict the same object.
However, for our case they are not and some differences are often existent. Secondly,
previous 2D image-3D model registration techniques used 2D real image which has
brightness (shading) information and developed an as accurate as possible 2D-3D
alignment. For our case, we use sketch which only has line information and since the
2D sketch and the 3D model are not completely the same, an approximate alignment
is sufficient.

In this section, we present a sketch-based 3D model retrieval algorithm utilizing
the 3D model feature View Context [19] and relative shape context matching [2].
It includes two stages: precomputation and retrieval. During the retrieval stage, we
first select a set of candidate views to align a 2D sketch with a 3D model based on
the precomputed View Context features of the 3D model before measuring their
more accurate distances, in terms of relative shape context matching cost. The 2D-
3D alignment step avoids brute-force direct matching between the sketch and many
sample views, that is reducing the search space to only a set of candidate views, by
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utilizing the features of all the densely sampled views to efficiently shortlist several
good candidate views for a more accurate 2D-3D correspondence.

The idea of View Context was originally proposed in [19] for 3D model retrieval
using 3D model queries. In [20] we found that View Context can be utilized to align a
2D sketch with a similar 3D model and performed preliminary tests on some models.
Based on [19] and [20], we found a new property of View Context: for different
views of the same model, their View Contexts are often different. Therefore, View
Context can be utilized to distinguish different sample views of the model, thus useful
for candidate views selection for the 2D-3D alignment. Based on this, we develop
our main idea to align a 3D model with a 2D sketch as follows: we replace each
sample view of the 3D model with the sketch and compute its View Context and if
the obtained new View Context is very similar to its original one, then this sample
view is considered as a candidate view for the 2D-3D alignment.

5.1 View context

To meet the requirements of the 2D-3D alignment step in our sketch-based retrieval
algorithm, we modify the View Context proposed in [19] and [20] by choosing a fixed
set of base views described as follows and an integrated image descriptor presented in
Section 4.1 for feature distance computation. For a 3D model centered at the origin,
we select a series of views as base view set Vb ,

Vb =<Vb
1 , Vb

2 , . . . , Vb
m >, (7)

where m is the number of base views. For a view V, its View Context is defined as
the visual information differences between V and each view in the base view set Vb ,

{d(V, Vb
j )|Vb

j ∈ Vb , 1 ≤ j ≤ m} , (8)

where d(V, Vb
j ) is the integrated image distance (Section 4.1) between V and Vb

j .
Thus, View Context measures the shape appearance deviation feature of a 3D model
with respect to a set of base views.

Figure 3 shows the View Contexts of several models: Fig. 3g plots the View
Context features of the initial poses of the six models in Fig. 3a–f. In these examples,
for demonstration, the base view set Vb consists of 13 views rendered from the 4 top
corners, 6 edge midpoints and 3 adjacent face centers of a cube centered at the origin.

We can see that for similar models their View Context features are similar and
different models are distinctively different in their View Contexts. Moreover, we
found that View Contexts of different views of the same model are also often
different, as shown in Fig. 4. This newly found property is important for sketch-based
retrieval framework to distinguish different sample views of a 3D model for the 2D-
3D alignment.

5.2 Precomputation stage

To speed up retrieval, we precompute the View Context and relative shape context
features for a set of sample views of each target 3D model in database.
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Fig. 3 View contexts of six
models: a hot air balloon0;
b hot air balloon1; c Ant0;
d Ant1; e Human0; f Human1

(a) (b) (c) (d) (e) (f)
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Fig. 4 An example indicating
that view contexts of different
views of the same model are
often different. The view
contexts of the front, left and
top views of the model
Human0 in Fig. 3e are shown
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5.2.1 View context precomputation

The View Context feature computation for every 3D model is detailed as follows.

(1) Base and sample views def initions. We define the viewpoints for the base and
sample views by subdividing an icosahedron based on the Loop subdivision
rule [22]. Figure 5 shows the view sampling by subdividing the icosahedron
(L0) once (L1) and twice (L2) and we set the cameras at the vertices of
the subdivided icosahedron for the base and sample view sequence gener-
ation. Considering the symmetrical property in rendering the feature views
(Section 3.1), we select half-L1 (select one from pair symmetric vertices, 21
views) for the base views and half-L2 (81 views) for the sample views. We
denote the sample view set Vs as follows,

Vs =<Vs
1, Vs

2, . . . , Vs
n >, (9)

where n is the number of sample views. Thus, n = 81, m = 21.
(2) View context feature extraction. We compute the integrated image distance

(Section 4.1) between each sample view in Vs and each base view in Vb . Assume
that dij (i = 1, . . . , n; j = 1, . . . , m) is the distance between the sample view Vs

i
and the base view Vb

j , then for each model we form an n × m view distance
matrix Ds = {dij}n×m. The ith row represents the View Context feature of the
sample view Vs

i , that is, Ds
i =< di1, di2, . . . , dim >.

5.2.2 Relative shape context precomputation

We also precompute the relative shape context features (Section 4.2) for the sample
views of each 3D model. They will be used in the retrieval stage. To improve the
storage efficiency, we adopt a sparse matrix representation to denote the relative
shape context features and only keep the feature values that are non-zeros (e.g. >1e-
5) and save them into a series of three-dimensional vector < θ, r, value >, where (θ ,
r) denotes one bin (θ : orientation, r: distance) of the relative shape context partition,
for which we use the default 5 × 12 partition. During the retrieval stage, we thus only
need to extract the relative shape context features for the query sketch.

5.3 Retrieval stage

Based on the precomputed View Context and relative shape context features of
the 81 sample views for each target 3D model, we develop a retrieval algorithm
comprising two steps: 2D-3D alignment and 2D-3D matching. The details are as
follows.

Fig. 5 Viewpoints sampling
method. L0: icosahedron; L1,
L2: subdivide the icosahedron
once and twice

(a) L0 (b) L1 (c) L2
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5.3.1 Step 1. 2D-3D alignment

(1) 2D sketch feature extraction. First, we extract the silhouette and outline views
of the query 2D sketch based on the method in Section 3.2 and then compute
its Zernike moments, Fourier descriptors, eccentricity and circularity features
(Section 4.1).

(2) Sketch’s view context feature extraction. Similar to the View Context precom-
putation (Section 5.2.1) for a 3D model, we compute the integrated image
distances (Section 4.1) between the sketch and all the base views of the target
model and name the resulting distance vector Dk =< d1, d2, . . . , dm > sketch’s
View Context.

(3) 2D-3D alignment. To align the 2D sketch and a 3D model before 2D-3D
matching, we choose some candidate views by keeping a certain percentage T
(e.g. 20%, 10% or 5%, that is, 16, 8 or 4 sample views in our experiments) of
the sample views with top View Context similarities as the sketch, in terms of
correlation similarity Si,

Si = Ds
i · Dk∥∥Ds

i

∥∥ ∥∥Dk
∥∥ . (10)

where, Ds
i (defined in Section 5.2.1) and Dk are the View Contexts of the

sample view Vs
i of the 3D model and the 2D sketch, respectively.

5.3.2 Step 2. 2D-3D matching

(1) Sketch-model distance computation. To more accurately measure the similarity
between the sketch and the model as well as to encompass the orientation
differences between the sketch and the sample views, we compare the sketch
with every candidate outline view using the relative shape context matching
(Section 4.2) and regard the minimum relative shape context distance obtained
as the sketch-model distance.

(2) Ranking and output. We sort all the sketch-model distances between the sketch
and the models in an ascending order and list the retrieved models accordingly.

6 Experiments and discussion

To evaluate our sketch-based retrieval algorithm using a 2D-3D alignment, we
perform comparative and evaluative experiments based on both hand-drawn and
standard line drawing query sketches, as well as a standard 3D model database. We
would like to mention that our 2D sketch-3D model alignment is different from the
previous 2D image-3D model registration techniques, where the 2D image contains
the view of the same object as the 3D model. Thus, they can use objective metrics
to measure the alignment accuracy. However, for us the object in the 2D sketch is
not completely the same as the 3D model and thus it is not one of its complete views.
Therefore, there is no one exact pose to perfectly align the 2D sketch with 3D models.
As a result, we mainly evaluate the alignment accuracy by comparing the robustness
(change in performance) of our retrieval algorithm while reducing the number of
candidate views during the alignment.
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6.1 Hand-drawn sketches

We first test and evaluate our sketch-based retrieval algorithm by performing a
similar experiment as the one described in a 2010 paper by Yoon et al. [39]. They
built a benchmark database by using the first 260 models (13 classes, 20 each) of
AIM@ Shape Watertight Model Benchmark (WMB) dataset [36] as target 3D model
dataset and 250 hand-drawn sketches as the query sets. For each class, one typical 3D
model and sketch are shown in Fig. 6. We need to mention that: (1) to compare with
the available retrieval results obtained by Yoon et al. in this section, we select the
same sketches as those in their paper; (2) the hand-drawn sketches were drawn by
non-artists and some of them are very simple sketches, e.g., using only 4 line segments
to represent an ant. We will give the overall performance of our approach later.

For the precomputation (Section 5.2), on average it takes 97 sec to process a
model using a computer with an Intel Xeon CPU E5520@2.27 GHz and 12.0 GB
of RAM: 8.8 sec for the View Context precomputation and 88.2 sec for the relative
shape context precomputation, for all the 81 sample views of the 3D model. During
the retrieval stage (Section 5.3), we set the default value for the percentage T for
candidate views selection (Section 5.3) to be 20%, that is, keeping top 16 candidate
views. We use the sketches in Fig. 6 as queries and the top-20 retrieved models are
listed respectively in Fig. 7. Compared to the retrieval results obtained by Yoon et al.
[39], as shown in Fig. 8, our retrieval lists are better for the bear, ant and hand
queries and comparable for the chair and cup queries. For the human and glasses
sketches, Yoon et al. achieved better results (in Section 6.3, we will show that our
approach achieves better performance on class level). For the seven queries, the
average accuracy (the percentage of the relevant models) in the top-8 retrieval results
of our algorithm and Yoon et al.’s are 80.4 and 76.8%, respectively. Thus, we have
achieved a better performance.

To measure the retrieval accuracy of our algorithm, we adopt the performance
metric of First Tier (FT). It defines how much percentage of a class has been
retrieved among the top C list, where C is the cardinality of the relevant class of
the query sketch. For our case, C = 20. We test the same queries as in Fig. 7 with
different percentages (T = 20%, 10% and 5%) for candidate views selection. Table 1
compares their FT scores.

Fig. 6 Typical 3D model and
2D sketch for each class of
Yoon et al.’s [39] benchmark
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Fig. 7 Hand-drawn sketch-based retrieval examples on WMB database using hand-drawn sketches
in [39]. The first 20 models are listed.

We can see that when we reduce the number of candidate views to be half of the
default value (T = 20%, 16 views), that is, 8 views, the average FT score decreases
only 3.6%. Even after reducing it further to be only a quarter of the default value,
that is, only 4 candidate views, the FT score drops only 9.3% averagely. This indicates
the robustness of our sketch-based retrieval algorithm with respect to the number
of candidate views. The relatively high FT scores also demonstrate the accuracy of
our retrieval algorithm. We note that for some classes, such as human and octopus,
when T becomes higher, FT may decrease somehow. Our explanation is as follows.

Fig. 8 Hand-drawn sketch-based retrieval results in [39]
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Table 1 First Tier performance comparison using different percentage T values and the thirteen
query sketches in Fig. 7

T Chair Cup Teddy Ant Hand Human Glasses Plane Table Plier Fish Bird Octopus
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

20 70 85 85 90 75 45 10 85 75 80 65 45 35
10 55 85 80 85 70 50 10 75 70 80 65 45 35
5 50 80 80 85 70 45 10 70 55 75 55 35 40

When T is increased, more candidate views are considered to compute the sketch-
model distance, that is to say, a longer sequence (e.g. 8 views when T = 10% and 16
views when T = 20%) of sketch-view distances will be computed for each model. The
sketch-model distance computed based on more candidate views may be smaller than
that computed based on less candidate views. Therefore, when more candidate views
are considered, the sketch-model distances between the sketch and some irrelevant
models may become smaller and thus these irrelevant models will be pushed forward
in the retrieval lists and this decreases the First Tier performance.

6.2 Standard line drawings

We perform a similar experiment as described in Section 6.1 using line drawing
queries. We still use the same WMB database but utilize Snograss and Vanderwart’s
standard line drawings dataset [35] as queries. Figure 9 shows several line drawings
examples that have relevant classes in WMB.

Similarly, we set the percentage T for candidate views selection to be 20%. We use
the sketches in Fig. 9 as queries and their top-20 retrieval results are shown in Fig. 10.
Table 2 shows the changes of the FT performance when using different percentage
values for candidate views selection. The robustness of our sketch-based retrieval
algorithm is verified again by the standard line drawing sketch queries. The decreases
in the FT performance by changing T from 20 to 10% and from 20 to 5% are 3.1 and
7.1% on average.

6.3 Overall performance comparison

To assess the overall performance of our algorithm on a database level and perform a
comparative evaluation with other approaches, we test our retrieval algorithm on the
complete query set (250 sketches) of Yoon et al.’s [39] benchmark and compare the
performance with a 2011 paper by Saavedra et al. [32]. They tested their proposed
STELA approach on the same benchmark database and compared with the global
shape descriptor-based approach HELO [33]. Table 3 and Fig. 11 compare the First
Tier performances of our approach (T = 20%) and these two methods (STELA and

Fig. 9 Typical sketches in Snograss dataset [35]
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Fig. 10 Standard sketch-based retrieval examples on WMB database using line drawings in [35]. The
first 20 models are listed

HELO) on each class. For the performances of STELA and HELO, we refer to
[32]. The average First Tier performances over all the classes are as follows: HELO:
13.9%, STELA: 16.5%, Ours: 41.5%. Apparently, we have achieved much better
results in terms of respective classes and overall performance.

In addition, we want to compare our approach with the algorithm in Yoon et al.
[39], in terms of the overall performance. Though we cannot find the complete
overall performance data in the paper, according to our knowledge (personal com-
munication with one of the author of the paper Yoon et al. [39]: Dr. Sang Min Yoon),
the performance of Yoon et al. [39] is comparable to STELA, in terms of the overall
First Tier performance as well as the First Tier performance for each class. Thus, our
alignment-based retrieval approach also outperforms Yoon et al. [39].

To have a comprehensive evaluation of our algorithm, we further provide the
results for other performance metrics including Precision-Recall plot, Nearest-
Neighbor (NN), Second Tier (ST), E-measure (E), Discounted Cumulative Gain
(DCG) and Average Precision (AP), as shown in Fig. 12 and Table 4 respectively.
The meaning of the above performance metrics is as follows [21, 34]. Precision
indicates how much percentage of the top K models belongs to the same class
as the query model while recall means how much percentage of a class has been
retrieved among the top K retrieval list. NN measures the percentage of the closest
matches that are relevant models. ST is the recall of the top 2(C-1) list, where C is
the cardinality of the relevant class of the query model. E is used to measure the
performance of the retrieval results with a fixed length, e.g. the first 32 models. It
combines both the precision P and recall performance R: E = 2/( 1

P + 1
R ). DCG is

defined as the summed weighted value related to the positions of the relevant models.
AP is to measure the overall performance and it combines precision, recall as well

Table 2 First Tier performance
comparison using different
percentage T values and the
seven query sketches in Fig. 10

T Cup Bear Ant Plane Hand Table Chair
(%) (%) (%) (%) (%) (%) (%) (%)

20 90 70 55 70 80 60 75
10 85 65 40 70 75 55 75
5 90 55 30 70 70 55 80
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Table 3 First Tier performance comparison between our method and STELA [32], as well as
HELO [33]

Methods Chair Cup Teddy Ant Hand Human Glasses Plane Table Plier Fish Bird Octopus
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

HELO 8.8 13.8 21.0 14.7 33.3 25.5 2.9 2.1 13.5 7.9 16.2 10.7 10.8
STELA 12.1 14.2 33.8 12.6 31.9 32.1 7.9 11.7 12.0 4.5 15.2 11.0 15.0
Ours 31.8 57.4 62.9 64.5 37.4 29.1 25.6 40.5 44.2 63.8 38.4 20.8 22.9

as ranking positions. A good AP needs both high recall and precision. AP can be
computed by counting the total area under the Precision-Recall curve.

Similarly, we also perform the robustness experiment by changing the values of
T and compare the results in Fig. 13. Their average First Tier performances over all
the classes are as follows: T = 20%: 41.5%; T = 10%: 40.8%; T = 5%: 38.9%. The
conclusion is consistent with the previous ones, thus our retrieval algorithm is robust
with respect to either respective models or classes.

6.4 Extensibility to larger or other database

To test the extensibility of our SBR algorithm to a larger database, we use the
complete 400 models in the WMB database. That is, we add 140 more models,
classified into 7 classes, each 20 and regard them as noise. Example models for those
7 classes are shown in Fig. 14. We set T = 20% and perform a similar experiment
as the one in Section 6.3. Figure 15 compares the performance with that of the
experiment done in Section 6.3 which uses Yoon’s benchmark (260 models of the
WMB database). We can see even when we added more models to the 3D dataset
used in Yoon’s benchmark, the performance is still stable and for most classes there
are only trivial decrease. The average FT performance is 38.3% and it only drops

Fig. 11 First Tier performance comparison between our method and STELA [32], as well as
HELO [33]
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Fig. 12 Precision-Recall
performance of our algorithm
on the Yoon et al’s [39]
benchmark
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3.2% compared to the performance achieved using Yoon’s benchmark. We need to
mention that the accuracy disparity in the “cup” class is due to the newly added
“vase” class and some “vases” are quite similar to “cup”, either in terms of the overall
shape or their outlines. On the other hand, the outlines of some cup sketches are also
similar to vases, which also shows a limitation of the outline feature representation.

We further tested our algorithm on the NIST database [8] from which we select
260 models that have relevant classes in the Yoon et al.’s sketch dataset. 13 relevant
classes were selected from NIST but we combined related classes according to the
available sketch categories in Yoon et al.’s sketch database, in the end we got 8
classes. We set T = 20% and the First Tier performances are: human: 23.6%, cup:
78.2%, glasses: 31.8%, plane: 60.8%, chair: 57.9%, table: 46.6%, fish: 43.7%, bird:
13.3%. The Average First Tier performance is 44.5%, which is comparable to the
performance on Yoon et al.’s database.

6.5 Discussions

We found that a good pose to align a 3D model with a sketch often ranks high
and for many of them it is among the top four. For example, Fig. 16 shows the
top four candidate views for the cup, teddy and plane hand-drawn query sketches
and cup, bear and plane line drawing query sketches. As seen in Fig. 16, in the top
four candidate views for these sketches, usually we already can find certain views

Table 4 Other performance metrics of our algorithm on the Yoon et al’s [39] benchmark

NN ST E DCG AP

0.688 0.581 0.411 0.731 0.556
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Fig. 13 First Tier performance comparison using different percentage T values on the Yoon et al.’s
[39] benchmark

of the 3D models that are accurate enough, in terms of retrieval, to correspond
with the sketches. We also want to mention that the orientation differences between
the sketch and candidate views in the examples, such as those existing in the four
candidate views for the plane line drawing query (alignment results in the third row
of Fig. 16), are not an issue for the retrieval since we utilize the relative shape context
to encompass the variations in camera up-vectors during rendering.

To find out the contribution of 2D-3D alignment, we compared the performances
of using the fixed sampling method and our alignment approach based on the
same number of sample/candidate views. For the fixed one, we tested with Yoon
et al.’s sampling method [39]: 6 orthographic and 8 isometric views. Because of the
symmetrical property in rendering our feature views as described in Section 3.1,
only half of the 14 sample views, that is 3 orthographic and 4 isometric views, are
selected after aligning 3D models with Continuous Principal Component Analysis
(CPCA) [37] method. For our algorithm, we keep the top 7 candidate views. We test
them on the Yoon et al.’s database. Table 5 compares their First Tier scores with
respect to each class and their overall First Tier performances are as follows: Fixed:
32.6%, Ours: 39.8%, which demonstrates an apparent improvement of using the 2D-
3D alignment step to shortlist several candidate views. As can be seen from Table 5,

Fig. 14 Typical 3D model for each of the added 7 classes
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Fig. 15 First Tier performance comparison using the whole WMB database (400 models) and only
the relevant 260 models as the target 3D model database

compared to the fixed sampling approach, our method also achieves a more balanced
performance especially on the chair, hand, human, glasses, table and plier classes.

Here, we also want to mention that the relative shape context matching part
is also important to achieve a better performance. The clue can be also found
from the fact that without alignment, that is using the fixed sampling approach,
the relative shape context matching-based retrieval algorithm already achieves a
First Tier performance of 32.6%, which already surpasses HELO (around 13.9%)
and STELA (around 16.5%), referred to Section 6.3. However, if incorporating our
2D sketch-3D model alignment step to shortlist better candidate views, we further
improve the retrieval performance to 39.8%. Therefore, both the View Context-
based 2D sketch-3D model alignment and the relative shape context matching on
the outline feature views, have important contributions to our apparently better
performance than HELO and STELA.

To conclude, our 2D-3D matching considers a large number of sample views
compared to previously sparse view sampling strategies, thus it is more robust to

Fig. 16 2D-3D alignment examples. Each row shows two sets of alignment results for a hand-drawn
sketch and a line drawing sketch. For each result, from left to right: a 2D sketch, a 3D model (in
initial pose) and the top 4 candidate views to align the 2D sketch and the 3D model
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Table 5 First Tier performance comparison between fixed sampling and our method

Methods Chair Cup Teddy Ant Hand Human Glasses Plane Table Plier Fish Bird Octopus
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Fixed 16.3 51.6 57.1 52.4 16.6 16.2 10.6 40.5 32.1 38.5 46.6 20.5 24.7
Ours 28.1 55.3 59.5 64.2 34.2 28.1 25.6 38.3 41.3 60.3 38.4 20.0 24.7

different poses of the sketches. It can efficiently find several good candidate poses of
a 3D model to align the model with a sketch. The above two types of experiments on
the hand-drawn sketch queries and standard line drawing queries have demonstrated
the effectiveness of our retrieval algorithm, which shows better performance than
Yoon et al. [39] and Saavedra et al. [32, 33]. The robustness of our retrieval algorithm
is also verified in our experiments.

6.6 Limitations

As shown in the above experiments, our approach has a good accuracy in terms
of sketch-based retrieval. Nevertheless, it has some limitations. Firstly, the perfor-
mances for some sketches (e.g. glasses, octopus and bird) are not as good as others
and still have room for further improvements. Secondly, relative shape context
matching part dominates the most part of the retrieval time: on average, it takes
0.86 sec to extract the features (Zernike moments, Fourier descriptors, eccentricity,
circularity and relative shape contexts) for a sketch; only 0.37 msec for the 2D-3D
alignment for a model; 17.5 msec for the 2D-3D matching based on relative shape
context for a pair of sketch-candidate view. The average time for a complete retrieval
on the Yoon et al.’s database is 19.5, 37.3 and 72.3 sec when keeping 4, 8 and 16
candidate views respectively. The retrieval time t (sec) is proportional to both the
number of candidate views M and the number of the 3D models in the database,
denoted by N. We denote τ as the matching time for one candidate view, then the
retrieval time t (sec) can be approximately formulated as follows: t = M ∗ N ∗ τ . In
our experiments, τ = 0.0175 sec.

According to the robustness analysis of our algorithm in Section 6.3 (Fig. 13),
there is no much performance decrease when we keep fewer candidate views. Thus,
we further tested our algorithm by keeping only 2 and 1 candidate view, and still
got the average First Tier performances of 37.4% and 35.9% respectively, compared
to the 41.5% when keeping 16 candidate views. The retrieval time is 10 and 5.4 sec
respectively. Thus, our suggestion is that users can make decision for the tradeoff
between the accuracy and efficiency based on the requirements of their respective
applications and available resources.

7 Conclusions and future work

In this paper, we have presented a sketch-based 3D model retrieval algorithm based
on the idea of first aligning a 3D model with a query 2D sketch before computing
their matching distance. The algorithm comprises precomputation and retrieval
stages. During the precomputation stage, we compute the View Context and relative
shape context features of a set of densely captured sample views for each target
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model. Based on the precomputed View Context features of a target model, in the
retrieval stage we can efficiently and effectively align the model with the 2D sketch.
Experiments based on hand-drawn and standard line drawings sketches demonstrate
the superior performance and robustness of our approach. Thus, it has a potential to
be used in applications, such as sketch-based 3D model recognition and modeling, as
well as 3D scene reconstruction based on 2D sketches.

Several facets of the algorithm can be further explored. First, during the retrieval
stage, we can use representative relative shape context [23] to speed up the matching
process between the sketch and the candidate views since we can reject the candidate
views that are obviously different from the sketches earlier. In addition, if using other
faster correspondence algorithms to replace our adopted LAP algorithm or adopting
some 2D image descriptors which are comparable in terms of effectiveness but
more computationally efficient, we may improve the retrieval performance further.
Second, we want to further test our sketch-based retrieval on other types of 3D model
databases and sketches. Third, extending our algorithms to other types of queries is
another interesting direction. For example, query by a 2D image or even a sketch of
a 3D scene comprising several objects.
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